
Painting with Light

Chris Schoeneman
Julie Dorsey
Brian Smits
James Arvo

Donald Greenberg

Program of Computer Graphics
Cornell University
Ithaca, NY 14853

ABSTRACT

We present a new approach to lighting design for image synthesis. It
is based on theinverse problemof determining light settings for an
environment from a description of the desired solution. The method
is useful for determining light intensities to achieve a desired effect
in a computer simulation and can be used in conjunction with any
rendering algorithm. Given a set of lights with fixed positions, we
determine the light intensities and colors that most closely match
the target image painted by the designer using a constrained least
squares approach. We describe an interactive system that allows
flexible input and display of the solution.

CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism; I.3.3 [Computer Graphics]:
Picture/Image Generation; I.3.6 [Computer Graphics]: Methodology and
Techniques - Interaction techniques.

Additional Key Words: simulation, global illumination, radiosity, ray trac-
ing, lighting design, inverse problems.

1 INTRODUCTION

Although global illumination algorithms can produce strikingly re-
alistic images, these algorithms can be difficult to use for lighting
design. Currently the only tools available to designers are based
upondirect methods—those that determine an image from a com-
plete description of an environment and its lighting parameters.
This forces a designer to begin with a geometric model, position
the lights, assign their colors and intensity distributions, and fi-
nally compute a solution. The process is repeated until the so-
lution matches the desired effect. This method is generally time-
consuming, tedious, and often counter-intuitive. Given that we usu-
ally begin with a notion of the final appearance, a more natural, al-
beit more difficult, approach is to solve theinverse problem—that
is, to allow the user to create atarget imageand have the algo-
rithm work backwards to establish the lighting parameters. Inverse
problems infer parameters of a system from observed or desired
data [1]—in contrast with direct problems, which simulate the ef-
fects given all parameters. Although inverse problems are common

in radiative transfer, thus far the field of computer graphics has been
almost exclusively concerned with direct problems. Yet, inverse
problems match a central goal of lighting design—determining how
to achieve a desired effect.

In this paper, we present an approach that allows a designer to
“paint” a scene as it is desired to appear. Given static geometry
and a set of lights with fixed positions, aconstrained least squares
approach is used to determine the light intensities and colors that
most closely match the target image painted by the designer. In the
domain of lighting design, geometry often constrains the placement
of the lights [2]; the designers frequently know about where to put
the lights but not how the lights will combine or how bright to make
them. Consequently, the task of selecting appropriate intensities for
static lights is a useful subproblem of lighting design, and this is our
focus. We do not address the automatic placement of lights, nor the
mapping of simulated intensities to physical properties of the lights
[3, 9].

2 INVERSE PROBLEM

The problem can be phrased more formally as follows: given static
scene geometry and a desired appearance, determine the lights that
will most closely match the target. There are constraints on pos-
sible solutions: only certain objects can emit light and only posi-
tive energy can be emitted—keeping us in the realm of physically
meaningful solutions. The existence of constraints implies that not
every target is realizable. The most general problem of determining
how many lights to use, where the lights should be placed, as well
as the distribution, color, and intensity of the lights is a non-linear
optimization problem. However, if all possible lights have been po-
sitioned, and their distributions have been fixed, the determination
of which lights to use and what their colors and intensities should
be is a linear optimization problem.

2.1 Constrained Least Squares

Supposef�1
; : : : ;�

ng is the set of functions resulting fromn
distinct light sources illuminating an environment independently.
These functions can be computed by any illumination algorithm,
including those that account for interreflection and shadows. For
example, they may be ray traced images [10] of a scene for each
light from the same viewpoint, or radiance functions over surfaces
in the environment computed via radiosity [4]. Let	 be the target
function we wish to approximate. To formulate the approximation
problem we require some minimal structure on the space of func-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
©1993 ACM-0-89791-601-8/93/008/0015…$1.50

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
©1993 ACM-0-89791-601-8/93/008…$1.50

143

tions. In particular, we require vector addition and scaling, which
we define pointwise, as well as an inner product defined on pairs of
functions (i.e. a symmetric positive definite bilinear form). From
the inner product we gain the useful notion of the “size” of a func-
tion via the norm

jj�jj =
p

h� ; �i; (1)

which provides a measure of error. The approximation problem can
then be stated in terms of finding non-negative weightsw1; : : : ;wn

such that the function

b	 =
nX

i=1

wi�
i (2)

minimizes the objective functionjj	� b	jj. Stated in this way, the
problem is one of least squares. Its unique solution is easily ex-
pressed in terms of the inner products:2
64

�

1
; �

1
�

� � �

�

1
; �

n
�

...
...

�
n
; �

1
�

� � � h�n
; �

ni

3
75

| {z }
M

2
64

w1

...
wn

3
75

| {z }
w

=

2
64

�

1
; 	

�
...

h�n
; 	i

3
75

| {z }
b

: (3)

Then� n matrix M is the Gram matrix of the inner product, which
consists of the coefficients of the normal equations [7]. The Gram
matrix is non-singular if and only if the functionsf�1

; : : : ;�
ng are

linearly independent, which will normally be the case if alln lights
producedistinct effects on the environment. Naturally, this excludes
coincident light sources.

The remaining task is to define an appropriate inner product on
the space of functions. Here we make use of the exact nature of the
functions. If the functions assign intensities to a set ofp discrete
points, such as images consisting ofp pixels, then the natural inner
product is thep-dimensional vector dot product.

Alternatively, if the functions define surface radiance, the most
natural inner product is the integral of the pointwise product of the
functions. We further assumethat the functions are piecewise linear,
defined by interpolating a finite set of patch vertices. This represen-
tation is easily integrated yielding

�

i
; �

j
�

=
vX

k=1

�
i
k�

2
k�

j
k (4)

wherev is the number of patch vertices,�k is proportional to the sum
of all patch areas adjacent to thekth vertex, and�i

k is the radiosity at
vertexk due to lighti. Under these assumptions, thenormal equa-
tionscan be written

ATDAw = ATD	 (5)

whereA is thev � n matrix of then vectors�i , andD is thev� v
diagonal matrix diag(�2

1; : : : ; �
2
v) of the weights used for the inner

product. With this definition,jj�jj is proportional to the total power
leaving all surfaces. Also, changes to the inner product are easily
expressed as changes toD.

2.2 Solving the Normal Equations

The problem now is to solve the system of equations from Equa-
tion 5. This system containsn equations inn unknowns wheren,
the number of lights, is generally much smaller than the number of
vertices in the environment or pixels in the image. LetM = ATDA

andb = ATD	 as in Equation 3. We chose to solve the system
Mw = b using a modified Gauss-Seidel iteration.

There is no guarantee that the solution to the system has only
positive entries. Simply clipping to zero after convergence is not a
viable approachbecausenegative valuescounteract some of the pos-
itive energy; ignoring them causes the environment to be too bright.
To avoid this difficulty, we modify the Gauss-Seidel algorithm so
that negative values are clipped to zero during each iteration. On
thek+1 iteration of the modified algorithm, the updated value ofwi

is

w(k+1)
i = max

bi �

Pi�1
j=0

Mij w
(k+1)
j �

Pn
j=i+1

Mij w
(k)
j

Mii
; 0

!
: (6)

Since a zero value does not influence other entries ofw, we are ef-
fectively ignoring that light while the iteration is producing a nega-
tive value for it. In practice, this approach always converges in the
sense that the difference between two iterations goes to zero. An
alternative method may be found in [6].

3 IMPLEMENTATION

Our implementation is based on surface radiance functions as op-
posed to images. The system is therefore view-independent, solving
for light intensities that are meaningful in a global sense, not simply
for a given view. Although the system does no automatic placement
of lights, the user may modify light source positions and distribu-
tions at any time. However, any such change requires that a new
solution�i be computed. To keep these operations fast, we have
currently limited the solutions to direct illumination from each of
the lights, accounting for distance and visibility but not secondary
reflections. Similarly we restrict surfaces to be ideal diffuse reflec-
tors. Using more complex techniques to find the light source func-
tions makes moving a light more expensive, but does not affect the
algorithm. By solving for the intensity of each color channel sepa-
rately, the colors are determined as well as the intensities.

The user modifies the radiance function of the target by “paint-
ing” light onto surfaces. We also adjust the matrixD so that painted
surfaces have more weight (or more area) in the solution, causing
the system to try harder to match painted surfaces than unpainted
ones. This is necessary in complex environments where the large
unpainted areas can overwhelm the effect of small painted areas.

To achieve interactive speeds while painting we use the method
introduced by Hanrahan and Haeberli [5] to quickly find which
patch the brush is currently affecting. Object id’s and the patchuv
coordinatesare rendered into auxiliary buffers. A lookupat the paint
brush position in these buffers quickly identifies the patch being
painted. Only painted patches are redrawn. Since very few patches
change at once, updates are easily made in real time.

The patch’s reflectance function modifies the light as it gets
painted on a surface. This prevents a surface from being painted
with physically unattainable colors. For example, a purely red sur-
face cannot be painted blue. The modified light then gets distributed
to the patch’svertices according to their proximity to the paint brush.
We restrict the radiosity at a vertex to between zero and one and lin-
early map this to the full dynamic range of the display.

The system recomputes the closest fitting combination of lights
after each brush stroke. All vertices painted between a button press
and release comprise a stroke. To maintain interactivity, we perform
all the updates incrementally. Instead of completely rebuilding	

144

(the target radiosities) and re-solving, however, we only change the
elements corresponding to painted vertices and make incremental
changes to the inner products. If�	 is a vector of the changes to
the radiosities withp non-zero terms, then

bnew = ATD(+�) = bold + ATD�	: (7)

Since�	 is typically very sparse, we can updateb with O(np) op-
erations by ignoring all zero entries of�	. Since most of the en-
vironment hasn’t changed, the old intensities provide a good ini-
tial guess for the modified Gauss-Seidel iteration and it converges
quickly. We can similarly update the weight (i.e. effective area) of
vertices. Consider changing the importance of one vertex. Let�D
be the diagonal matrix with its sole non-zero entry being the change
in weight of the vertex. Then

bnew = AT(D +�D)	 = bold + AT
�D	: (8)

Because�D has only one non-zero entry,�D	 has only one non-
zero entry andbold can be updated withO(n) operations. Changing
the inner product, though, requires thatM be updated as well. This
can be done incrementally, observing that

Mnew = AT(D +�D)A = Mold + AT
�DA: (9)

Since�DA has only one non-zero row, we need to look at only one
column ofAT so we can do the multiplication inO(n2) steps.

In addition to painting, the user can also interactively move and
aim light sources. Changing a light requires recomputing the di-
rect illumination due to that light. SinceA changes,M must be re-
computed as well; however the cost of recomputing a column of
A greatly overshadows the matrix multiply used to determineM.
Because this can take time for large environments, the user can de-
fer these computations until all the lights have been satisfactorily
placed.

The user may also move the camera interactively. Because
we paint directly onto the geometry, painted surfaces are view-
independent. Also, since no directional effects are accounted for,
the functions�i for each light are independent of the position and
orientation of the camera. Therefore we need not recomputeA =
j�1 � � ��nj or re-solve for the light intensities as a result of moving
the camera.

4 RESULTS

We tested the system on a moderately complex environment con-
sisting of polygonal meshes with about 19,000 polygons, 27,000
vertices, and 12 lights. Figure 1 shows the user’s painted environ-
ment at the top and the system’s solution on the bottom. A user can
see both views at once while working to get immediate feedback on
how closely the design is being met. Figure 2 shows the same en-
vironment with the same light positions but with different painted
intensities and colors (left) and a distinct best approximation (mid-
dle). The lighting parameters determined by the interactive lighting
design were then used to compute a ray traced solution, which is
shown in Figure 2 (right). The large scale washes of color and illu-
mination levels are captured well in the rendered image. The user
can quickly and easily modify a design to have a very different ap-
pearance.

Figure 3 shows the screen during a painting session. The window
in which the user paints is on the left and the best fit solution is on
the right. Some of the support tools for choosing light to paint and
positioning lights are also shown. In this design, 14 lights were
placed in another environment of similar complexity.

Figure 1: Design (top) and associated best approximation (bottom).

5 CONCLUSIONS AND FUTURE WORK

We have created an interactive system to help with lighting design
in image synthesis by solving a restricted inverse lighting problem.
The user paints an approximation of the desired result and the sys-
tem computes light intensities and colors to match it. This approach
can be more intuitive and easier to use than the usual direct edit–
render cycle.

Given fixed geometry and a desired target, the problem of deter-
mining light intensities and colors can be solved in the least squares
sense using a modified Gauss-Seidel algorithm. The method can be
made more interactive by using incremental updates to the matrices
and vectors involved in the solution process. Magnifying the effect
of eachbrush stroke by increasing the weight of the affected vertices
allows the user to make changes to the environment with relatively
little effort.

Although they have received little attention in computer graph-
ics, inverse lighting algorithms have great potential as design tools.
Clearly there is much to do beyond automatic selection of light
source intensities. Automatic light source placement would greatly
increase the utility of the technique, but will require more elabo-

145

Figure 2: Design (left); best approximation (middle); ray tracing (right).

Figure 3: Interactive system.

rate optimization methods, as this requires solving non-linear con-
strained optimization problems.

Any rendering technique will work for determining the contribu-
tions from eachof the lights. Our use of direct illumination only was
motivated by a desire to allow interactive light placement. A more
elaborate implementation might compute more accurate solutions
for those lights that were unlikely to changeposition or distribution.

In order to make the system usable for lighting designers, some
way of mapping screen intensities to physical units in the system
must be found. Since the system is being driven by the user’s per-
ception of what is being painted, the lighting conditionsof the user’s
environment must be accounted for, as well as the non-linearities of
the monitor, the reproduction of color on the monitor, and most im-
portantly, the extremely limited dynamic range of the monitor.

ACKNOWLEDGEMENTS

We would like to thank Jed Lengyel for his helpful comments and
Kurk Dorsey and Suzanne Smits for their help assembling the pa-
per. Much thanks to Matthew Bannister who created the model and
the lighting designs. This work was supported by the NSF grant

“Interactive Computer Graphics Input and Display Techniques”
(CCR-8617880), and by the NSF/DARPA Science and Technology
Center for Computer Graphics and Scientific Visualization (ASC-
8920219). The authors gratefully acknowledge the generous equip-
ment grant from Hewlett Packard Corporation on whose worksta-
tions the research was conducted.

REFERENCES

[1] Baltes, H. P., editor. Inverse Source Problems in Optics,
Springer-Verlag, New York, 1978.

[2] Dorsey, Julie O’B., François X. Sillion, and Donald P. Green-
berg. “Design and Simulation of Opera Lighting and Pro-
jection Effects,” inComputer Graphics, 25(4), August 1991,
pages 41–50.

[3] Evans, Ralph M.Eye, Film, and Camera in Color Photogra-
phy, John Wiley & Sons, New York, 1959.

[4] Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg,
and Bennett Battaile. “Modeling the Interaction of Light Be-
tween Diffuse Surfaces,” inComputer Graphics, 18(3), July
1984, pages 213–222.

[5] Hanrahan, Pat and Paul Haeberli. “Direct WYSIWYG Paint-
ing and Texturing on 3D Shapes,” inComputer Graphics,
24(4), August 1990, pages 215–223.

[6] Lawson, Charles L. and Hanson Richard J.Solving Least
Squares Problems, Prentice-Hall, Englewood Cliffs, 1974.

[7] Luenberger, David G.Optimization by Vector Space Methods,
John Wiley & Sons, New York, 1969.

[8] Poulin, Pierre andAlain Fournier. “Lights from Highlights and
Shadows,” Proceedings of the 1992 Symposium on Interactive
3D Graphics, inComputer Graphics, April 1992, pages 31–
38.

[9] Tumblin, Jack and Holly Rushmeier. “Tone Reproduction for
Realistic Computer Generated Images,” in Radiosity Course
Notes of SIGGRAPH’91, ACM, August 1991, pages 229–
257.

[10] Whitted, Turner. “An Improved Illumination Model for
Shaded Display,”CACM, 32(6), June 1980, pages 343–349.

146

